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ABSTRACT

In recent years, Unmanned Aerial Vehicles (UAVs) and drones have gained an important place 
in our lives by providing innovative solutions in a wide range of areas from defense industry, 
agriculture, logistics, and search and rescue operations. Despite advances in positioning tech-
nologies such as the Global Positioning System (GPS), autonomous navigation and reliable 
location estimation in confined spaces, dense vegetation, or areas with signals remains a major 
challenge.
This paper presents an innovative approach that combines You Only Look Once (YOLO) and 
Simultaneous Localization and Mapping (SLAM) algorithms to develop a GPS-independent 
positioning system. The vehicles beneath the drone are detected in Oriented Bounding Box 
(OBB) format using YOLO, and the estimated flight height is calculated using the known aver-
age wheelbase of the vehicles. This height information is integrated with SLAM algorithms to 
estimate the drone’s position and speed.
The test results show that the method provides accurate estimates with an accuracy of ± 1 me-
ter at heights between 30 m and 50 m and can work effectively in conditions where GPS is in-
adequate. Furthermore, YOLO’s use of OBB improves object detection accuracy and provides 
a solution to scaling problems in SLAM algorithms. This innovative system offers significant 
potential for autonomous drone navigation and speed control in environments without GPS 
access, such as confined spaces.
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INTRODUCTION

In recent years, UAVs have been used in a wide range 
of applications from defense industry, agriculture, logistics, 
and search and rescue operations. With the expansion of 
these applications, the need for accurate and reliable positi-
on/speed determination has become even more important. 
Traditionally, UAVs have relied heavily on GPS data for po-
sition determination and navigation. However, in confined 
environments, tunnels, densely vegetated terrains or areas 

with weak GPS signals, GPS-based location estimation may 
be insufficient. This situation poses a risk to both mission 
success and flight safety.

This paper aims to develop a visual odometry system 
for drone position and speed estimation without GPS data. 
In this camera-based-system, YOLO object detection algo-
rithm and SLAM methods are combined to overcome sca-
ling issues. This system offers an innovative solution that 
will enable autonomous navigation in environments such 
as confined spaces, tunnels, densely vegetated areas where 
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GPS signal is insufficient. “Can drones reliably estimate po-
sition and speed without GPS data using SLAM algorithms 
and visual information obtained from objects with known 
dimensions?”, we will address the following sub-objectives: 
detecting objects with known physical dimensions (e.g. 
vehicles) in OBB format with the YOLO algorithm, using 
the pixel dimensions of the detected objects to estimate the 
drone’s flight altitude, mitigating the scaling problems in 
SLAM algorithms with object-based altitude estimation, 
and testing the developed method in real flight scenarios 
and different environmental conditions.

Our goal is not only to estimate the drone’s height but 
also its three-dimensional motion, rotation, and position 
through SLAM algorithms to ensure accurate tracking in 
space. In addition, one of the main objectives is to develop 
a reliable solution for autonomous drone navigation and 
speed control that eliminates the dependency on GPS. For 
this purpose, the feasibility of an alternative system to GPS 
will be demonstrated through tests on camera images and 
algorithm integrations.

This paper aims to develop a visual odometry system 
that can estimate position and velocity using only monocu-
lar camera images without GPS data. Known object dimen-
sions are a common method to obtain depth information 
for estimation with monocular cameras. Our approach is 
based on detecting vehicles on the ground in OBB format 
using the YOLO algorithm and converting the object di-
mensions into a drone height estimate. By integrating the 
calculated height information with SLAM algorithms, both 
the position and speed of the drone will be estimated more 
accurately. Thus, the aim is to achieve autonomous naviga-
tion and speed control without the need for any external 
markers and without GPS data. In addition, by testing the 
system under real flight conditions, it will be possible to 
compare it with similar applications in the literature and 
the advantages/shortcomings obtained.

In this context, the paper first analyzes the success le-
vel and limitations of similar methods through a literature 
review and then evaluates the effectiveness of YOLO and 
OBB-based object detection as an effective method to redu-
ce the scale error in SLAM algorithms. Thus, an innovative 
and high accuracy solution is proposed to enable drones to 
fly without losing their position when GPS is disabled.

LITERATURE REVIEW

In the literature, it is known that Visual Odometry (VO) 
and SLAM methods are utilized for position estimation in 
environments where GPS is disabled or insufficient [1]. VO 
and SLAM algorithms can simultaneously extract the dro-
ne’s motion, orientation and environment map by detecting 
feature points on consecutive images from the camera [2]. 
VO can predict drone motion by feature matching between 
consecutive images. However, problems such as scale error 
can affect the accuracy of these methods [3]. On the other 

hand, in recent years, deep learning-based object detecti-
on algorithms (e.g., YOLO) have enabled real-time and 
high-accuracy object recognition; objects such as vehicles, 
people, and buildings within the field of view of the drone 
camera can be detected [4]. The low latency and high accu-
racy rates of the YOLO algorithm offer unique advantages 
for real-time applications [5].

Scale problems of visual odometry algorithms are one 
of the most common challenges, especially in monocular 
cameras. Detailed investigations on this topic show that 
combining VO methods with SLAM algorithms provides 
effective solutions to such problems [6]. However, most 
existing studies additional markers or pre-mapped infor-
mation, and a completely “non-landmark-based” system is 
less frequently. Approaches that scale issues can be mitiga-
ted with solutions based on object dimensions have impro-
ved the accuracy of SLAM algorithms [7,8].

METHODOLOGY

A. Research Method and Design
In this study, we adopt an experimental approach to es-

timate drone height from bird’s-eye photos using the deep 
learning-based YOLO algorithm. The study consists of two 
main phases:
1. Data Collection and Preparation: A data set was crea-

ted using photographs taken from different heights.
2. Software Development and Analysis: Python prog-

ramming language [9] and YOLO (yolov11x-obb) mo-
del were used to estimate the height of vehicles in pho-
tographs based on pixel width [10].

B. ORB-SLAM Algorithm
The ORB-SLAM algorithm basically consists of three 

parts. In the first part, feature points in the images are de-
tected. These points are usually the corners of the objects 
in the image and are used to detect the change of position. 
These points are detected using the Features from Accele-
rated Segment Test (FAST) and Binary Robust Independent 
Elementary Features (BRIEF) algorithms.

In the second part, these detected feature points are 
matched with each other in consecutive images. In this way, 
the position of a point after a position change is determined 
and this is of great importance in understanding in whi-
ch direction and how much this change is. This matching 
process relies on evaluating the Hamming distance between 
feature points.

In the third part, the matched points are put into the 
Perspective-n-Point (PnP) algorithm to calculate the chan-
ge in position and thus determine the direction and amount 
of the position.

The algorithm proceeds through the following steps:
1. Feature Detection: Using the FAST and BRIEF algorit-

hms, feature points in the images are detected. These 
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points are usually the corners of objects.
2. Feature Matching: Feature points detected in consecuti-

ve images are matched based on their Humming distan-
ce, so that the position change can be performed using 
these points.

3. Position Estimation: Position determination is made by 
feeding the matched points into the PnP algorithm. It is 
determined how far in which direction.
However, if there is no information about the calibration 

of the camera or physical measurements within the field of 
view, this method can only calculate relative positions and 
movements. If the system is integrated with additional data 
sources such as GPS, absolute position can be determined.

C. Data Collection Process and Preparation
The photographs used in the study were obtained from 

various internet sources from different altitudes (30 m, 36 
m, 45 m) were compiled as bird’s eye view photographs. In 
the software used includes Python, YOLO, OpenCV and 
NumPy [11] has been used.

D. Image Processing and Model Processes
The photographs were analyzed by going through the 

specified steps:
Distortion Removal: The images were undistorted with 

the OpenCV library using camera parameters (focal length, 
optical center, distortion coefficients) [12].

Vehicle Detection (YOLO-OBB): Using YOLO’s yolo-
v11x-obb model, vehicles were labeled in OBB format. The 
model detected the pixel widths of each vehicle, and the 
extreme values were filtered out (Fig. 1.).

Width/Length Ratio: Reduced false positives by filtering 
out detections with very unusual ratios (e.g. various vehic-
les that do not match the aspect ratio of a passenger car).

Weighted Average with Confidence Level: When more 
than one vehicle is detected in an image, the pixel width of 
each vehicle is weighted by the confidence coefficient spe-
cified by the YOLO model and averaged.

Focal Calibration and Height Calculation: Based on ima-
ges of known height, the relationship between the height of 
the drone H (in meters), image pixel size wpix (in pixels) of 
the detected vehicle is obtained using the following relation.

H=f
wactual

wpix
In this expression, ‘f ’ is the focal length of the camera in 

pixels. As the actual object size (wactual), the average whe-
elbase of a passenger car of 1.85 m is considered. 

With this method, a height estimation based only on 
the focal width of the camera and the pixel dimensions of 
the object is realized by detecting vehicles in bird’s eye view 
photographs.

RESULTS

Height Estimation Success: Height estimates are accu-
rate to within ±1 meter, while the uncertainty above these 
values is 10% at 30 m. At altitudes of 50 m and above, the 
margin of error increased slightly due to the reduction in 
pixel size (Fig. 1).

Impact of using OBB: a. The OBB feature of the YOLO 
model allowed the correct corner coordinates to be deter-

Figure 1. Feature detection and matching stages of the ORB-SLAM algorithm on Notre-Dame Cathedral. On the left, the 
feature points detected with the FAST algorithm, in the center the matching of these points in consecutive frames, and on 
the right the connecting lines showing the directions and distances between the matched points.
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mined even when the vehicles were rotated, resulting in 
more stable results in pixel width calculation, b. Filtering by 
width/length ratio and confidence threshold reduced false 
positive detections (Figs. 2,3).

ORB-SLAM Integration: a. The ORB-SLAM algorithm’s 
position estimation based on feature matching in consecu-
tive frames provided position/motion information from a 
different perspective. The quality of the feature matching is 
effective in determining the drone’s direction and amount 
of motion (rotation, translation), b. This method, which 
can track position without depending on GPS or reference 
marks, can be considered as an additional source of informa-
tion that will partially reduce the uncertainty in height.

Code and Real-Time: The codes developed in Python, 
OpenCV and YOLO were able to process close to 10-15 fra-
mes per second (FPS) on a given hardware configuration.

In this study, drones were used to detect images of pas-
senger cars in images acquired at three different heights (30 
m, 36 m and 45 m). The median of the widths of the de-
tected cars at each height was used to create the graph in 
Figure 4 and the data points were fitted to the curve y=1.85.
(f/x). The aim here is both to evaluate the compatibility of 
the obtained camera height values (blue) with the actual he-
ight values (black) and to make a validation by re-obtaining 
the approximate focal length of the camera, 1416 (px), ba-
sed on the apparent width of the vehicles.

As can be seen in Figure 5, the results obtained with the 
proposed method are very consistent with the actual height 
values. Moreover, the focal length value obtained from the 
curve is 1416 pixels, which is the same as the actual value 
of focal length 1416. This result demonstrates the feasibility 
of the main objective of the study, which is to estimate the 
drone height without the use of GPS.

DISCUSSION

In this paper, a method combining a YOLO-based obje-
ct detection model (yolov11x-obb) and camera calibration 
steps is developed to estimate drone height without GPS 
data. By detecting vehicles in bird’s eye view photographs 
taken at different altitudes, the width information in pixels 
is obtained, and then the estimated height of the drone is 
calculated using the known vehicle wheelbase (1.85 m) and 
camera focal length. The results show that the method is 
applicable in various environments and at different height 
ranges (approximately 10 m - 50 m).

The advantages of the method we have developed. It 
shows the potential to estimate drone height with only mo-
nocular camera data in confined spaces or in environments 
where GPS signal is insufficient by reducing the dependen-
cy on GPS. It also provides easy applicability with existing 
camera and simple calibration processes, without requiring 
additional sensors, such as LiDAR (Laser Imaging Detec-
tion and Ranging) and barometer. YOLO’s use of the OBB 
format accurately measures vehicles in different orientati-

Figure 2. Schematic diagram illustrating the relationship 
between an object’s actual size, its projected pixel size in 
the drone camera image, and the drone’s flight height. The 
flight height of the drone (H) can be calculated based on the 
camera’s focal length (f), the real-world dimensions of the 
detected object (e.g., the average wheelbase of a passenger 
car), and the object’s observed pixel width (wpix). Accu-
rate focal length calibration and precise object detection are 
critical to minimizing scale errors and ensuring the robust-
ness of the height estimation process.

Figure 3. An example drone camera image showing mul-
tiple passenger cars detected using the YOLO-OBB model 
and enclosed in directional bounding boxes. Each vehicle 
is accurately identified, and its bounding box is rotated to 
align with the orientation of the vehicle on the ground, 
rather than being constrained to the horizontal and vertical 
axes. This alignment allows for more precise estimation of 
the true dimensions of the vehicles, which is critical for reli-
able altitude calculation.
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ons and reduces false detections, and OBB support is very 
important in achieving this.

There are also several imitations of our study. At alti-
tudes above 50 m, the vehicle size becomes very small in 
pixels, which reduces the estimation accuracy. Lighting and 
weather conditions such as dense fog, heavy rain or low il-
lumination conditions can reduce the object detection per-
formance, that can lead to incorrect height estimations. 

In our study, when the possibility of combining with 
ORB-SLAM is evaluated, it can be suggested to integrate 
VO and SLAM algorithms with this project since they can 
track the drone motion in 3D space even if they do not es-
timate the height directly. Reducing the “depth” and “scale” 
errors with additional image information (e.g. stereo came-
ra or additional sensor) can increase the reliability of the 
method.

Improvements that can be made in the study can be ca-
tegorized under three headings: a. More calibration points: 
Using different known elevation values can make the sys-
tem more stable, b. Expanding the data set: The generaliza-
bility of the model can be increased with additional photos 
including day and night, different weather conditions and 
different vehicle types, c. Real-time application: With GPU 
optimization and faster CNN models, real-time (online) 
high altitude prediction on a drone can be achieved.

Figure 4. Example images showing passenger cars being detected and enclosed in directional bounding boxes using the 
YOLO-OBB model. The figure illustrates how the algorithm not only identifies the vehicles but also captures their orienta-
tion by aligning the bounding boxes with the direction of the vehicles. This capability significantly improves the robustness 
of detection compared to traditional axis-aligned bounding boxes, especially in cases where the vehicles are rotated at 
various angles relative to the drone’s field of view. The use of oriented bounding boxes ensures more precise width measure-
ments, which is critical for accurate flight height estimation.

Figure 5. Graph illustrating the relationship between the 
drone’s flight height and the visible width of detected vehi-
cles in the camera image. The curve represents the inverse 
proportionality between the apparent pixel width of the ve-
hicles and the drone’s altitude, based on the calibrated focal 
length and known average vehicle dimensions. The actual 
flight heights of 30 meters, 36 meters, and 45 meters are 
indicated with horizontal dashed lines for reference. The 
strong agreement between the measured and actual heights 
validates the effectiveness of the proposed method for esti-
mating altitude from monocular images without GPS input.
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The photographs used in this study reflect height values 
at certain ranges. Collecting data over a wider range (5 m to 
200 m) and in different environmental conditions (evening 
hours, cloudy weather, etc.) would contribute to a more 
comprehensive validation of the pixel width - actual height 
relationship and thus increase the diversity of data for diffe-
rent heights and environmental conditions.

YOLO-based object detection models are more succes-
sful in daylight and high contrast images. It is important 
to train the model for night and low illumination conditi-
ons. To improve the performance of the model in adverse 
conditions such as low light, fog or rain, additional data 
sets should be created and different sensor technologies 
such as infrared cameras or heat cameras should be in-
vestigated.

In our study, only one altitude value (25 m) was used as 
a reference to calibrate the focal length. Using calibration 
points at different altitudes (10 m, 25 m, 40 m, etc.) can 
further reduce scale errors and improve accuracy at diffe-
rent altitudes. Using more calibration points would be valu-
able in this respect.

The ORB-SLAM algorithm can extract the drone’s posi-
tion and motion information through feature matching and 
PnP calculations. A SLAM system that is fully integrated 
with the altitude estimation module can provide a fully au-
tonomous navigation solution that accurately provides not 
only altitude, but also horizontal position and rotation in-
formation. This can be achieved with full integration with 
ORB-SLAM.

Our results show the importance of real-time (onli-
ne) application and hardware optimization. Optimizati-
on techniques such as model compression, quantization 
or TensorRT should be investigated for real-time execu-
tion of code developed on Python/OpenCV on embed-
ded platforms (e.g. NVIDIA Jetson, Raspberry Pi). When 
high speed in real-time (≥20 FPS) is achieved, it will be 
possible for drones to provide instant altitude feedback 
during flight.

In this work, the focus is on estimating the height of 
vehicles based on their pixel width. Buildings, road signs 
or objects of different sizes can be used in a similar way. 
Determining the dimensions of different objects can help 
to provide a more robust basis for estimation by providing 
many reference points. This can be achieved by diversif-
ying the dataset and using objects other than vehicles.

The camera-based approach we used in our study is 
particularly suitable for high altitude and adverse may be 
limited in weather conditions. By fusing data with additi-
onal sensors such as barometer, IMU (Inertial Measure-
ment Unit), LiDAR or radar, the accuracy of drone height 
and position information can be significantly improved. 
This can be achieved with the integration of embedded 
sensors. 

CONCLUSION

Testing the method developed in our study in auto-
nomous drone projects in industrial environments (e.g. 
cargo delivery, mapping, agricultural spraying) or in dif-
ferent academic studies may provide the opportunity to 
test the validity of the method in field conditions and to 
benefit from larger data sets. Achieving this with indust-
rial and academic cooperation will make a great cont-
ribution to our lives. As future work, further improve-
ments could focus on expanding the range of detectable 
objects, optimizing the system for real-time applications 
on embedded hardware, and integrating additional sen-
sor data such as barometric pressure or LiDAR measure-
ments to enhance accuracy under diverse environmental 
conditions.
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