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ABSTRACT

Unmanned Aerial Vehicles (UAVs), commonly known as drones, in recent years continue 
to gain popularity in various fields, ranging from the entertainment sector to the service in-
dustry. Their application areas are expanding every day, making them increasingly versatile. 
They are widely used in the defense industry, contributing to the have a voice of the coun-
tries that possess them. Given this context, object detection, tracking, and other customized 
tasks carried out using imagery obtained from UAVs have become significantly important. 
However, the images obtained from UAVs are generally low resolution and quality, as they 
need to be captured from a safe flight distance. This situation is a disadvantage for object 
detection applications. To reduce this disadvantage, various Super Resolution techniques 
have been developed. In this paper, the focus is on the critical importance of improvements 
in this field, especially within the defense sector, by utilizing ESRGAN and YOLO together 
to enhance the resolution of images captured from UAVs. The primary objective of this 
study is to enhance the efficacy of object detection by simultaneously augmenting the num-
ber of detected objects and improving the accuracy of the detection process. This research 
presents a comparative analysis of the outcomes achieved through two distinct approaches. 
Firstly, object detection is executed utilizing a pre-trained YOLO-V7 model on a LR image 
extracted from the VisDrone Dataset. Subsequently, the same YOLO-V7 model is deployed, 
but object detection is carried out on the SR version of the same LR image obtained from 
the ESRGAN network. The findings from this investigation unequivocally demonstrate that 
conducting object detection on the SR image not only results in a notable increase in the 
quantity of detected objects but also leads to a significant enhancement in the overall accu-
racy of the detection process.
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INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have rapidly 
evolved into a versatile and increasingly popular technol-
ogy in recent years. UAVs find applications across a wide 

spectrum, especially in the defense industry with active 
use, encompassing areas such as border security, target 
identification, electronic warfare, among others. Beyond 
defense, they are extensively employed in fields like agri-
cultural surveillance, environmental monitoring, energy 
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sector inspections, law enforcement operations, aerial 
photography and even entertainment drone flights. This 
diversity stands as one of the fundamental factors contrib-
uting to the growing popularity of UAVs. Furthermore, the 
advancement of technology and the reduction in costs have 
made UAVs more accessible, leading to a broader adoption 
of their advantages by a greater number of individuals and 
organizations. 

One of the common applications of UAVs is object 
detection. In these applications, models consisting of YOLO 
(You Only Look Once) [1] and its derivatives are popularly 
used. YOLO is a deep learning algorithm and model used in 
the field of object detection. YOLO aims to detect and clas-
sify objects in an image by examining the entire image in a 
single pass. Unlike some other object detection methods, 
YOLO can detect and classify multiple objects simultane-
ously without requiring multiple processing steps. In other 
words, it can recognize objects in an image all at once.

However, since the images obtained from UAVs are 
generally of low-resolution (LR), it directly impacts the 
accuracy of object detection applications in a negative way. 
To address this drawback, various super-resolution (SR) 
models have been developed [2–7]. In this article primar-
ily focused on models derived from Generative Adversarial 
Networks (GAN) [3, 4, 8]. GAN networks consist of two 
comparative structures. The first one, the Generator (G), 
aims to create a new image from simple noise data. On 
the other hand, the Discriminator (D), aims to distinguish 
whether the images generated by the G are real or fake 
[9]. In super-resolution applications, the G tries to obtain 
high-resolution (HR) from a LR image, while the D tries 
to distinguish whether this image is real HR or generated 
from LR. In object detection, training with SR images has 
been observed to results 8% better in quality compared 
to training with LR images [10]. These GAN models are 
Super-Resolution GAN (SRGAN), Enhancement SRGAN 
(ESRGAN) and Real-ESRGAN, chronologically. However, 
due to the normalization algorithms they employ, SRGAN 
and ESRGAN architectures significantly lag behind Real-
ESRGAN in improving object detection [11]. Therefore, 
in this article focused on the Real-ESRGAN architecture. 
Figure 1 illustrates the general architecture of how object 
detection is performed from the LR image at the proposed 
method in this article.

The rest of this paper is organized as follows. Section 
Literature Review provides the related works. Section 
Methodology presents the proposed system in detail and 
experimental results. Finally, the concluding remarks are 
shown in Conclusion.

LITERATURE REVIEW

This article investigates the impact of Super Resolution 
models on object detection. In this section, we discuss 
existing methods related to our work.

The problem of enhancing the resolutions of LR images 
has been a long-standing issue, and various solutions have 
been proposed over the years. In 2017, the SRGAN archi-
tecture was introduced for this problem [4]. GAN based 
methods, such as SRGAN and ESRGAN, demonstrated 
remarkable performance in improving LR images. In 2018, 
the SRGAN architecture was further developed, leading to 
the proposal of the ESRGAN architecture. In this architec-
ture, a structure called Residual Dense Block (RDB) was 
introduced along with an improved loss function. RDB 
made learning easier and allowed for the creation of deeper 
models. Additionally, the Batch Normalization Block in 
the SRGAN architecture was removed, reducing computa-
tional complexity and enabling faster training [8]. In 2021, 
the Real-ESRGAN architecture focused on a U-Net based 
Discriminator. The proposed U-Net based architecture 
provides detailed per-pixel feedback to the generator while 
maintaining the global coherence of synthesized images by 
offering global image feedback as well [12]. It has been sug-
gested that using pure synthetic data during the training of 
the Real-ESRGAN model offers better visual performance 
[3].

However, despite the realistic appearance of the gener-
ated HR images, especially high-frequency details (such as 
image edges) suffer from degradation. Some studies have 
suggested that edge information plays a crucial role in 
object detection and that images generated by GAN net-
works have a negative impact in this regard. Therefore, 
preserving this feature enhances object detection accuracy 
[10]. When combined with edge detection, a 2% increase 
in object detection accuracy has been observed [13]. Deep 
learning-based object detection architectures are broadly 
categorized into two main types: One-stage detectors 
and Two-stage detectors. While One-stage detectors are 

Figure 1. General Architecture of Object Detection from LR Image and SR Image.
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efficient, they have lower accuracy rates compared to Two-
stage detectors.

Xing et al., [14], worked on object detection with the 
UAV datasets which they created. In their studies, the 
PReLu function was proposed instead of the generally 
used ReLu activation function. It has also been suggested 
to remove the normalization block as in other studies. 
Through the utilization of SR images, the mean Average 
Precision (mAP) increased from 64.82% to 68.38, while the 
missing rate decreased from 16.98% to 14.23%

The impact of SR images on object detection was 
demonstrated in a paper [15]. In the utilized architecture, 
an Edge Enhancement network was employed between the 
GAN block and the Detection block. The study used the 
COWC dataset and the one-stage detector SSD for object 
detection. When trained and tested with LR data, an accu-
racy rate of 61.9% was achieved. However, when ESRGAN 
was used to enhance the resolution and subsequently train 
and test with SR data, the accuracy increased to 85.8%. 
Finally, when an Edge Enhancement network was used 
between ESRGAN and SSD, resulting in edge-enhanced 
super-resolution GAN (EESRGAN), an accuracy rate of 
86% was attained [10]. In another similar study conducted 
in by Zou et al. [13], a four-stage object detection architec-
ture was presented. In this approach, the ESRGAN block 
was initially used to increase resolution. Subsequently, an 
Edge Enhancement block was employed to extract edge 
information. Then image segmentation was applied, and 
the processed image was fed into the object detection 
block (YOLOv3). Using the COCO test-dev dataset, they 
achieved an accuracy rate of 42.2%, a significant improve-
ment compared to the 31% accuracy rate of YOLOv3 with-
out the enhancement stages.

Akhyar et al. [16] conducted a study on the steel indus-
try’s significant problem of defect detection and proposed 
a solution that involved the integration of GAN and a one-
stage detector (SSD). They used the Severstal Steel Dataset 
for testing. When testing with LR images using another 
one-stage detector (YOLO-X), they achieved a 65% accu-
racy rate. However, when testing with SR images generated 
by GAN networks and using SSD for object detection, they 
reached an accuracy rate of 80.4%. In a different application 
involving pothole detection, Salaudeen and Çelebi et al. 
[17] used ESRGAN to enhance SR images and EfficientDet 

for object detection. They achieved a 32% accuracy rate 
with SR images, while the accuracy rate with LR images 
lagged significantly at 10.6%. In 2023, Lv et al. [18] used 
Real-ESRGAN in combination with SSD for missing bolt 
sub-detection, resulting in a 9.59% increase in accuracy 
compared to without GAN. Zhang et al., [19] used simi-
lar method for detection Rice Leaf disease. Also, Chen et 
al., [20] proposed a method for helmet wearing detection. 
Maqsood et al., [21] achieving the wheat stripe rust classifi-
cation using the GAN methods. 

METHODOLOGY

The proposed architecture aims to enhance the resolu-
tion of images taken from UAVs, allowing for the detection 
of objects that would normally go unnoticed. With this goal 
in mind, the architecture is presented in two main sections. 
Initially, the LR image is processed within the GAN block, 
where a pretrained Real-ESRGAN model is employed to 
generate an SR image. Subsequently, these SR images are 
individually fed into the Object Detection block, where the 
YOLOv7 architecture is utilized for object detection. The 
results obtained from this process are then compared with 
the results of directly using YOLOv7 on LR images, and the 
success rate of the architecture is determined.

Real ESRGAN, presented in Figure 2, is an improved 
version of ESRGAN. One of the key differences is the shift 
from the classical “first-order” degradation model to a 
“high-order” degradation model, as previous versions were 
unable to restore images with unknown and complex deg-
radations. This is because when we take photos with our 
cellphones, they may exhibit various degradations such as 
camera blur, sensor noise, sharpening artifacts, JPEG com-
pression, etc. To address this complexity and improve train-
ing stability, a new degradation model has been proposed. 
Additionally, changes have been made in the D structure, 
incorporating U-Net design and Spectral Normalization, 
while no changes have been made in the G structure.

However, the architecture used in this work is designed 
to demonstrate the only impact of SR images obtained from 
LR images on object detection. As stated in the introduc-
tion, LR images are first processed using the Real-ESRGAN 
structure to obtain SR images. The used Real-ESRGAN [3] 
architecture is a pre-trained model trained with the DIV2K 

Figure 2. Architecture of Real-ESRGAN [3].
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[22], Flickr2K [23], and OutdoorSceneTraining [24] datasets 
[3]. The resulting SR images are then input into the YOLOv7 
model for object detection. YOLOv7 [25] is a significant 
iteration of the YOLO object detection model, widely recog-
nized in the field of computer vision. YOLOv7 is designed 
to enhance the speed and accuracy of object detection while 
reducing model complexity. This version builds upon the 
success of its predecessors by optimizing the network archi-
tecture and introducing various improvements. YOLOv7 
utilizes a streamlined model design, reducing computational 
requirements and enabling real-time performance on a vari-
ety of platforms. It incorporates advancements in anchor 
clustering, network scaling, and feature pyramid networks to 
enhance object detection precision. YOLOv7 is well-suited 
for a range of applications, including autonomous driving, 
surveillance, and image analysis, where efficient and accurate 
object detection is crucial. In the general architecture showed 
in Figure 3, the LR image from the VisDrone Dataset is input 
into the Real-ESRGAN block to obtain a higher resolution 
SR image. Object detection was performed on the resulting 
SR image using the pre-trained YOLOv7. The results are pro-
vided as output.

Experiments and Results
The LR images used in the proposed model were 

extracted from the images in the Validation section of the 
VisDrone dataset [26] include 548 images. The VisDrone 
dataset is a comprehensive benchmark dataset for visual 
object tracking, object detection, and single-object track-
ing tasks. It consists of high-quality aerial video sequences 
captured by various drone-mounted cameras. The dataset 
encompasses diverse scenarios, including urban areas, nat-
ural landscapes, and congested public events. It features 

a wide range of challenges such as object occlusion, scale 
variation, fast motion, and complex object interactions. The 
VisDrone dataset provides a rich collection of annotated 
data, including object categories, bounding boxes, object 
trajectories, and attributes, making it a valuable resource 
for developing and evaluating computer vision algorithms. 
Researchers and developers use this dataset to advance the 
field of visual object tracking and object detection, particu-
larly in aerial and drone-related applications.

In [27], various object detection architectures were com-
pared using three different datasets. In our paper, we will 
use the comparative results data to perform object detec-
tion with the same dataset after increasing its resolution 
using our own architecture. This will clearly demonstrate 
the impact of Super Resolution on aerial images object 
detection. The comparative results obtained are shown 
in Figure 4. In this paper, the results will be compared by 
applying the same object detection models again, using the 
SR versions obtained by employing the ESRGAN model on 
the same datasets.

The architecture in this paper has not been fully estab-
lished and the development process continuing. Currently, 
at this stage of the study, the SR image was generated by 
employing the pretrained Real-ESRGAN model within 
an algorithm running on a T4 GPU in the Google Colab 
environment. The results were obtained as a result of the 
integration of Real-ESRGAN and YOLOv7. Accordingly, it 
has been observed that SR image detects more objects and 
the accuracy rates of the detected objects also increase. The 
results are shown figures 5-8. In Figures 5 and 7, the object 
detection results obtained using YOLOv7 with LR images 
are showed, while Figures 6 and 8 demonstrate the results 
obtained using SR images.

Figure 3. General Architecture of Proposed Model.
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Figure 4 shows the detection of 15 persons, 18 cars, 
1 bus, 4 trucks, and 1 traffic light using LR images with 
YOLOv7. In Figure 5, object detection with SR images 
identified 14 persons, 1 bicycle, 29 cars, 1 motorcycle, 1 air-
plane, 1 bus, 5 trucks, and 3 traffic lights with YOLOv7. The 
original image has 37 persons, 4 bicycle, 34 cars, 13 van, 1 

bus, 16 motor, tricycle 6. This means that while the detec-
tion made with LR images achieved a %40,5 mAP (15 of 37) 
accuracy rate for people and %52,9 mAP (18 of 34) for cars, 
the detection made with SR images achieved a %37,8 mAP 
(14 of 37) accuracy rate for people and %85,3 mAP (29 of 
34) accuracy for cars.

Figure 6. SR image Object Detection.

Figure 7. LR image Object Detection. Figure 8. SR image Object Detection.

Figure 5. LR image Object Detection.

Figure 4. Comparison of mAP for three datasets [27].
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Figure 7 shows the detection of 3 persons, 22 cars, 1 bus, 
4 trucks, and 1 traffic light using LR images with YOLOv7. 
In Figure 8, object detection with SR images identified 7 
persons, 28 cars, 1 motorcycle, 1 bus, 4 trucks, and 2 traffic 
lights with YOLOv7. The original image has 13 persons, 4 
tricycle, 40 cars, 3 truck, 1 bus, 4 motor. This means that 
while the detection made with LR images achieved a %23,1 
mAP (3 of 13) accuracy rate for people and %55 mAP (22 
of 40) for cars, the detection made with SR images achieved 
a %53,9 mAP (7 of 13) accuracy rate for people and %70 
mAP (28 of 40) accuracy for cars.

CONCLUSION

Object detection in UAV images is one of the popu-
lar problems of recent times. Since these images are gen-
erally obtained from a safe flying distance, the objects are 
small and have low resolution. In this article, it is aimed 
to increase object detection in low resolution images with 
Real-ESRGAN and YOLO integration. According to the 
results obtained, more small objects could be detected in 
high-resolution images and an increase in the accuracy 
rates of the detected objects was observed. It is envisaged 
that these results will be further improved with the Edge 
Enhancement and Image Segmentation blocks obtained in 
other studies.
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