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ABSTRACT

Obstacle detection is a critical research area for autonomous robots. It is especially important 
to detect small obstacles that can get entangled inside the robot. In addition, it can provide 
input to the movement and safety algorithm of autonomous devices by performing not only 
obstacle detection but also cliff detection. In this study, a tiny machine learning (TinyML) 
model that can run on a low-memory microcontroller and detect obstacles using multi-zone 
time-of-flight (ToF) sensors from STMicroelectronics is proposed. The proposed method ap-
plied on an ST ARM based development kit. The object detection model achieved a high 
accuracy of over 90% on 5 different locations and obstacle presences.
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INTRODUCTION

The number and importance in our lives of autonomous 
robots with many sensors around us is increasing day by 
day. As the robot market grows, autonomous robot research 
is becoming more active than ever. Most autonomous 
robots use lidar, time-of-flight (ToF) sensor, ToF camera, 
depth camera, wide-angle camera, IR optical sensors and 
electromechanical switches to detect obstacles and perform 
navigation [1-5]. Camera based sensor systems require a 
great amount of processing power and memory. Therefore, 
such systems have greater costs. On the other hand, simpler 
applications have high error rates and less performance. 
Single point-based sensor structures are not suitable for 
detecting small obstacles. Especially cables and toys are 
very difficult to detect for these kind of sensors.

To overcome these issues, it is possible to use high-res-
olution sensors such as cameras to detect obstacles on the 
robot’s driving route. However, in addition to processing 
power and cost constraints, cameras have privacy issues. 
For these reasons, the ToF sensors became popular in 
recent years [6].

In a real application, the robot must detect obstacles 
quickly and in real time during its movement. Depending 
on the location and distance of the detected obstacle, the 
robot must move away from the obstacle with a differ-
ent route. By using traditional methods, there problems 
require a relatively large amount of computational power 
and resources. To overcome these, tiny machine learning 
(TinyML), which is optimized for structures with small 
memory and low processing-power microcontrollers sys-
tems, was used.
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TinyML focuses on running compressed and opti-
mized machine learning models on small platforms [7]. In 
recent years, the number of neural networks, platforms, and 
hardware it supports has increased [8]. TinyML has been 
successfully applied in various application areas such as 
healthcare, agriculture, industrial IoT, etc. [7].

This study was carried out with a data set of 18 obsta-
cles of different sizes, with the presence of the obstacle and 
5 positions (6 classes) during the straight motion of the 
robot. The proposed model achieved both a memory of less 
than 100kByte and an accuracy of approximately 90% for 6 
classes. And it is optimized for ARM Cortex-M microcon-
troller (STM32F746NG evolution board [13]).

LITERATURE REVIEW

There are many contactless activation, gesture recogni-
tion, content management and home applications specific 
to the multi-zone ToF sensor. Some of these application 
examples are urinal toilet flush, tap, dispensers, smart 
switch, public screen wake-up applications, gesture recog-
nition, industrial robots, production lines, user friendly UI 
applications, content management, coffee machine liquid 
measurement, tanks, vending machines, ATM, lockers etc. 

TinyML studies specifically designed for multi-zone 
ToF sensors are available in the literature. They are mostly 
gesture-based applications. For example, it is possible to 
perform gesture recognition using the small Temporal 
Convolutional Networks model [9]. There are motion 
modules provided by manufacturers [10] and applications 
to detect motion type [11]. In another work, an applica-
tion for ground type detection was proposed. In this work, 
hard and soft ground output is produced using ToF sensors 
mounted on a robot to feed the neural network model [12]. 
Another study, there is an object detection study using a 
64x32 high-speed single-photon ToF image sensor. In this 
study, the number of frames is very large and there is no 
memory constraint in the design [22]. Although ToF sen-
sors widely used, publications on the use of ToF sensors on 
obstacle detection problem are limited. 

METHODOLOGY

Tiny Machine Learning (TinyML) is a rapidly expand-
ing field of constrained hardware applications of machine 
learning technologies. It covers a wide range of compo-
nents, including algorithms, hardware infrastructure, data 
analytics, direct in sensor-connect devices, low power 
consumption and superior software capabilities [14, 15]. 
Additionally, low-power machine learning in MCU-class 

hardware has the potential to increase efficiency and 
achieve significant reductions in carbon emissions in var-
ious industries [16].

There are many platforms available for developing 
TinyML applications such as edge impulse [17], uTensor 
(ARM), TensorFlowLite, STM32Cube.AI, NanoEdge AI 
Studio, emlearn. The hardware and framework supported 
by these platforms’ examples may vary. In this study, edge 
impulse was determined as the platform. This platform is 
used Tensor Flow Lite Micro (TFLM) framework.

The workflow for TinyML on the Edge impulse plat-
form is shown in Fig. 1. First, the collected data builds a 
model using standard tensor flow machine learning meth-
ods through training and testing. In the second part, the 
memory used by TensorFlow is pruned, quantized and 
optimized. The pruning method starts with training the 
network and then selecting key connections by position-
ing weights greater than a certain threshold. The weights 
below this level are eliminated, resulting in a clipped 
model. This new model may reduce the accuracy but 
reduces memory and model complexity. The quantization 
method is used to reduce the precision of the weights and 
activations from 32-bit floating-point numbers to 8-bit 
numbers. Symmetric and asymmetric quantization meth-
ods are used in this study [18]. In the asymmetric method, 
the scaled value ranges are variable. In the symmetric 
method, value ranges are fixed. These methods can reduce 
the memory space required to store network parameters 
by 20% to 30%. As the third step, the pruned and quali-
fied model is converted from multidimensional arrays to 
one-dimensional arrays. Finally, the C/C++ model is cre-
ated so that it can be embedded in the system containing 
the MCU. 

For obstacle detection, the VL53L7 sensor from 
STMicroelectronics, which has an 8x8 area and a 90° view-
ing angle, was used as input data to the TinyML model. This 
sensor allows choosing between 4x4 or 8x8 individual zones 
for precise distance measurements and can measure up to 
350cm. Additionally, the frame rate can be programmed in 
the range of 60Hz - 15Hz. Last, it gives range sigma, dis-
tance, reflectance, and SPAD signal values for 8x8(64) pix-
els, as shown in Fig 2.

This multi-featured sensor allows it to be used in differ-
ent applications. In addition, this diversity of data provides 
a suitable infrastructure for machine learning. (Fig. 2.) In 
this work an STM32F746NG evolution board was used 
to collect data from the sensor [13]. During the measure-
ments, sensor data was read at 30Hz frame rate by using the 
C library shared by ST company [21].

Figure. 1. Workflow for TinyML.
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Obstacle Detection Setup with ToF sensors 
The aim of this study is to create and implement a 

model that can fit in low memory, produce high accuracy 
output, and execute in real time. To detect obstacles, the 
first step is to perform tests involving different obstacles 
and their locations. The tests were carried out in 5 different 
positions in front of the moving robot as shown in Figure 3. 
Additionally, obstacle-free tests were also performed. The 
data were data were collected multiple times at different 
locations with the mobile robot (figure 3) by using 18 dif-
ferent small obstacles seen in figure 4. The collected real-
time data was prepared for training by labeling locations 
and obstacles.

Tiny ML CNN model
To build the TinyML model, low resolution ToF 

applications were examined [10]-[12] and it is seen that 
Convolutional Neural Network (CNN) was frequently used 
in the literature. Therefore, CNN was used in this study. 
First, a data set consisting of 6 outputs containing object 
detection and location via the mobile robot was collected. 
The data set contains 64 pixels (Fig. 5) where each pixel 
consisting of 4 features (range sigma, distance, reflectance, 
SPAD). There are 256 data in total for one frame. The 

sampling rate was determined as 30Hz. In summary, 7680 
data can be collected in 1 second.

With the increase of pixels of collected data, required 
response time and memory increases. Hence, a reduction in 
data is imminent. During our experiments it was seen that 
the pixel values in the first 4 rows are more important for 
detecting the object depending on the location of ToF sen-
sor (Fig. 5). Thus, a frame ToF data of the model is deter-
mined as 4 rows x 8 columns (32 pixels). Each pixel gives 
four features described above, and 10 consecutive frames 
forms one input sample. In this case, the data content is 32 
pixels x 4 features x 10 frames. To reduce the computational 
complexity, which is an important limitation for small scale 
microprocessors, we decided to determine if there is any 
dominant feature which obviates the remaining. For this 
reason, in every trial the network fed by one feature, and the 
remaining features were eliminated. Hence, the total num-
ber of input data of the model was determined as 320. In 
the first step the input data was reshaped as a 40x8 matrix 
to feed the network. The second and third steps include 2D 
convolution and maxpooling layers. Finally, the output of 
maxpooling layer was flattened and applied to the dense 
layer. The final network architecture and code steps are 
shown in figure 6 and Figure 7.

To create the final model, the model with the highest 
accuracy rate was selected by changing the number of fil-
ters and kernel filter size of 2D convolution layers. (Fig. 6) 
Additionally, the learning rate was chosen as 0.0005 and 

   
Figure 2. Color maps examples of range sigma, distance, reflection and SPAD values for 8x8 pixels for 50mm cube object.

  

Figure 4. Obstacles included in the data set.

Figure 3. Position areas of objects for training data.

Figure 5. Sensor FoV pixel index and FoV for ground sys-
tem.
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epochs 30. The model was developed, trained and tested on 
“Edge Impulse” platform, which is a TinyML platform [19].

By using these parameters, the input features were 
applied to the network one by one, and the feature with 
the highest accuracy was determined. The final model was 
converted to a tiny model by using the TFLM framework. 
(Fig. 1)

Experimental Result
In this study, the codes were written with C/C++ pro-

gramming language by using TensorFlow Lite Micro 
(TFLM) library on an ARM Cortex-M hardware [13]. The 
output of the model is the probability of 5 positions and 
obstacle states by the SoftMax activation function. Range 
sigma, distance, reflectance and SPAD values taken from 
ToF sensor were used as features as shown in Figure 2.

Table 1 shows the float (without quantization) and int8 
(quantized) accuracy results for the features in the model 
shown in Fig. 2. The difference between float and int8 is 
the quantization process. Quantization works by reducing 
the precision of the model’s weights, so there can often be 
some reduction in performance in contrast of some gain 

Figure 6. Final TinyML network architecture.

Table 2. Confusion Matrix of Reflectance

  Detect Pos1 Pos2 Pos3 Pos4 Pos5 Uncertain
Detect 94% 2.7% 0.1% 0.0% 0.0% 0.6% 3.0%
Pos1 14% 83% 0.0% 0.0% 0.0% 0.5% 2.8%
Pos2 0.0% 0.0% 100% 0.0% 0.0% 0.0% 0.0%
Pos3 4.1% 0.0% 0.0% 95% 0.5% 0.0% 0.9%
Pos4 3.2% 0.0% 0.0% 0.0% 94% 2.4% 0.8%
Pos5 0.0% 0.0% 0.0% 0.0% 1.3% 95% 3.3%
F1_S. 0.96 0.78 0.98 0.97 0.96 0.92

Table 1. Result of features

Reflectance R_Sigma Distance SPAD
Latency 2 ms
RAM 11.8Kb
Flash 53.5Kb
Accuracy (Int8) 93.69% 91.83% 55.33% 11.54%
Accuracy (Float) 93.16% 93.49% 64.81% 94.59%

Figure 7. Final TinyML network code block with param-
eters.
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in computational resources [20]. The most dramatic result 
seen on the table 1 is obtained by using quantized SPAD 
values. Natural form of SPAD values are float, therefore the 
quantization operation has a great amount of deterioration 
on information carried by SPAD. Table 2 shows the confu-
sion matrix of the best result which is obtained by reflec-
tion feature. To help comparing the results by future works 
alternative performance metrics which are F1 scores and 
uncertain results for the 0.6 confidence threshold are also 
included in the Table 2.

The model was realized on a real robot platform. The 
model output is the position of the obstacle, but once the 
position information was detected, distance information 
can also be obtained from the sensor data. An obstacle test 
that was not used in model training was performed and dis-
played with an interface (Figure 8).

CONCLUSION

In this paper, the model performance of the TinyML 
model, developed using data from the multi-zone ToF sen-
sor while the autonomous robot is in motion, is presented 
on an embedded system. Model accuracies of four features 
taken from an 8x8 ToF sensor are compared to determine 
the best feature. Using the selected high-accuracy feature, 
the CNN model was adapted to the microcontroller with 
TensorFlowLite for TinyML implementation. The model 
is implemented on a low-power microcontroller with lim-
ited computing resources and memory to give an output 
in 300ms. And it has been shown that a 93% accuracy rate 
can be achieved. As a result, it has been shown that high 
accuracy obstacle detection can be implemented with a low 
resolution ToF sensor and a microcontroller without using 
a camera.

By using a similar model in the future, studies such as 
detecting small obstacles and creating maps can be carried 
out with multiple or higher resolution ToF sensors.
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